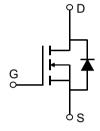
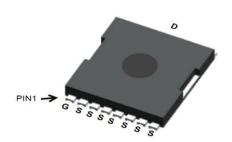
Description

Features


• 150V, 160A

 $R_{DS(ON)}$ Typ = $4m\Omega$ @ V_{GS} = 10V


- Advanced Split Gate Trench Technology
- Excellent R_{DS(ON)} and Low Gate Charge
- 100% UIS TESTED!
- 100% ΔVds TESTED!

Application

- Load Switch
- PWM Application
- Power Management

Schematic Diagram

TOLL-8L

Package Marking and Ordering Information

Device	Marking	Package	Outline	Reel Size	Reel (pcs)	Per Carton (pcs)
NS150H004T	NS150H004T	TOLL	TAPING	13"	2000	10000

Absolute Maximum Ratings (@ T_J = 25°C unless otherwise specified)

Symbol	Parameter		Value	Units
V_{DS}	Drain-to-Source Voltage		150	V
V_{GS}	Gate-to-Source Voltage		±20	V
I _D	Continuous Drain Current	T _C = 25°C	160	Α
		T _C = 100°C	96	Α
I _{DM}	Pulsed Drain Current (1)		640	Α
E _{AS}	Single Pulsed Avalanche Energy (2)		784	mJ
P_{D}	Power Dissipation	T _C = 25°C	284	W
$R_{ hetaJC}$	Thermal Resistance, Junction to Case	0.44	°C/W	
T_J,T_STG	Junction & Storage Temperature Range		-55 to 150	°C

Electrical Characteristics (T_J = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Off Char	acteristics					
V _{(BR)DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	150	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 150V, V _{GS} = 0V	-	-	1.0	μА
I _{GSS}	Gate-Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 20V$	-	-	±100	nA
On Chara	acteristics					
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.5	3	3.5	V
R _{DS(ON)}	Static Drain-Source ON-Resistance ⁽³⁾	$V_{GS} = 10V, I_D = 30A$	-	4	5.5	mΩ
Dynamic	Characteristics					
C _{iss}	Input Capacitance		-	5030	-	pF
C_{oss}	Output Capacitance	$V_{GS} = 0V, V_{DS} = 75V,$ f = 1MHz	-	672	-	pF
C_{rss}	Reverse Transfer Capacitance	1 - 11VII 12	-	15	-	pF
Q_g	Total Gate Charge		-	80	-	nC
Q_gs	Gate Source Charge	$V_{GS} = 0 \text{ to } 10V$ $V_{DS} = 75V, I_{D} = 20A$	-	30	-	nC
Q_{gd}	Gate Drain("Miller") Charge	V _{DS} = 73V, I _D = 20A	-	15	-	nC
Switchin	g Characteristics					
t _{d(on)}	Turn-On DelayTime		-	50	-	ns
t_r	Turn-On Rise Time	$V_{GS} = 10V, V_{DD} = 75V$	-	89	-	ns
$t_{\text{d(off)}}$	Turn-Off DelayTime	I_D = 20A, R_{GEN} = 6Ω	-	93	-	ns
t_f	Turn-Off Fall Time		-	58	-	ns
Drain-So	urce Diode Characteristics and M	Max Ratings				
I _S	Maximum Continuous Drain to Source Diode Forward Current		-	-	160	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	640	Α
V _{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0V, I _S = 30A	-	-	1.2	V
trr	Body Diode Reverse Recovery Time	L = 15 \ di/dt = 100 \\	-	120	-	ns
Qrr	Body Diode Reverse Recovery Charge	$I_F = 15A$, di/dt = 100A/us	-	250	_	nC

Notes:

^{1.} Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature.

^{2.} E_{AS} condition: Starting T_J =25°C, V_{DD} =75V, V_G =10V, R_G =25ohm, L=0.5mH, I_{AS} =56A

^{3.} Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%.

0

1

Typical Performance Characteristics

Figure 1: Output Characteristics

30

V_{GS} = 10V

V_{GS} = 4.8V

20

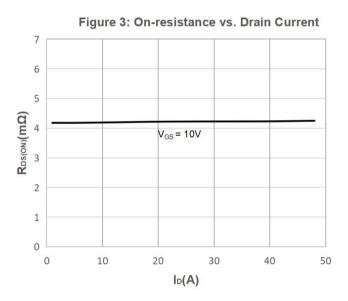
V_{GS} = 4.6V

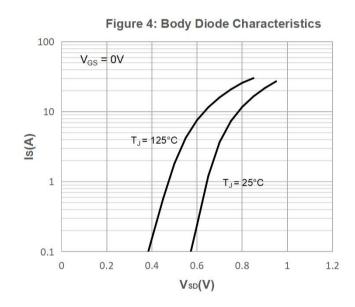
V_{GS} = 4.5V

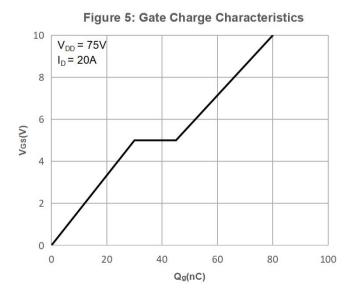
10

V_{GS} = 4.3V

2


V_{Ds}(V)


3


4

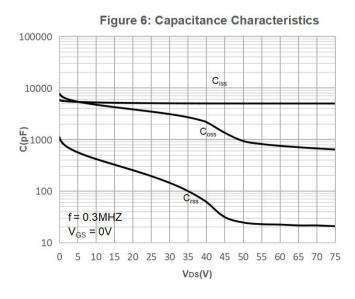

5

Figure 2: Typical Transfer Characteristics 20 $V_{D\$} = 5V$ 16 12 ID(A) T = 125°C 8 T. = 25°C 0 2 3 3.5 0 0.5 1.5 2.5 4 4.5 5 Vgs(V)

Typical Performance Characteristics

Figure 7: Normalized Breakdown voltage vs. Junction Temperature

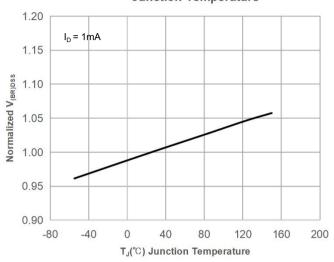


Figure 9: Maximum Safe Operating Area

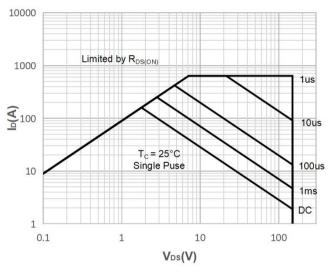


Figure 11: Normalized Maximum Transient

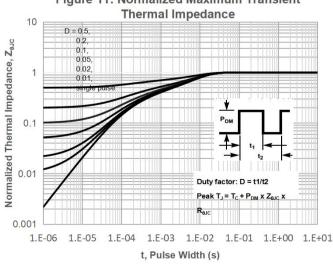


Figure 8: Normalized on Resistance vs. Junction Temperature

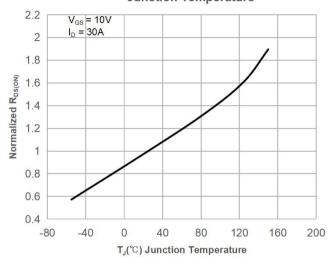


Figure 10: Maximum Continuous Drian Current vs. Case Temperature

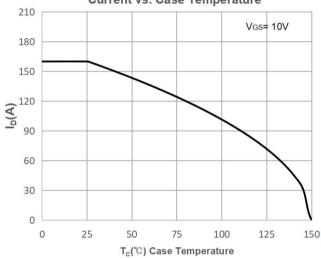
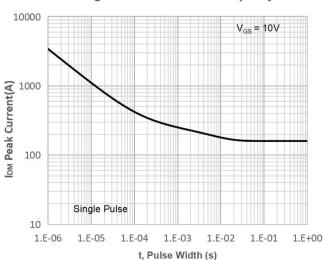



Figure 12: Peak Current Capacity

Test Circuit

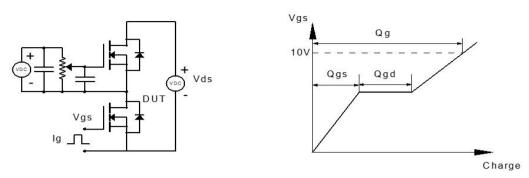


Figure 1: Gate Charge Test Circuit & Waveform

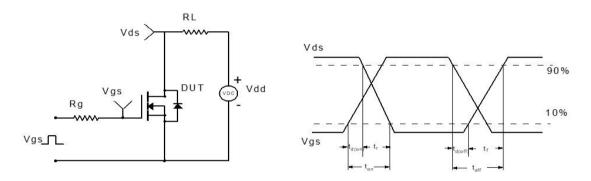


Figure 2: Resistive Switching Test Circuit & Waveform

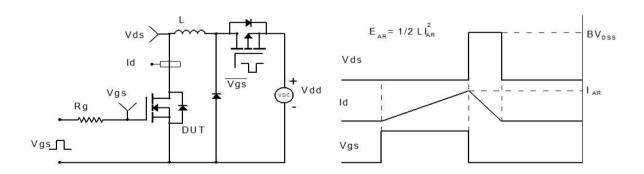


Figure 3: Unclamped Inductive Switching Test Circuit& Waveform

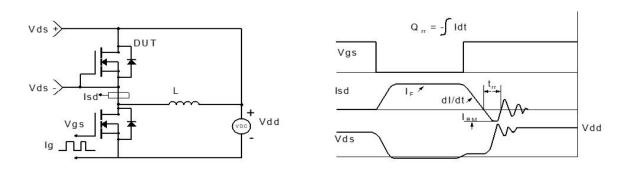
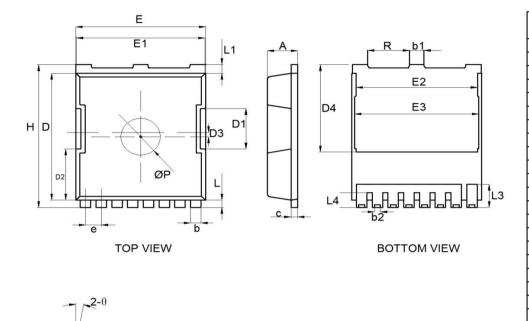



Figure 4: Diode Recovery Test Circuit & Waveform

Package Mechanical Data(TOLL)

SYMBOL	MILLIMETER				
SIMBUL	MIN	NOM	MAX		
A	2.20	2.30	2. 40		
b	0.60	0.70	0.80		
b1	1.10	1.20	1.30		
b2	0.36 REF.				
С	0.40	0. 50	0.60		
D	10. 30	10. 40	10. 50		
D1	3.20	3. 30	3. 40		
D2	4.08	4. 18	4.28		
D3	0. 53	0.63	0.73		
D4	7.35 REF.				
Е	9.80	9. 90	10.00		
E1	9.70	9.80	9.90		
E2	8.80 REF.				
E3	8.95 REF.				
е		1.20 BS	C.		
Н	11. 50	11.70	11. 90		
L	0.50	0.60	0.70		
L1	0.60 0.70		0.80		
L2	0.10 REF.				
L3	1.27 REF.				
L4	1.10 REF.				
P	2.00	3. 00	4.00		
R	3.00	3. 10	3. 20		
θ	7°	9°	11°		
θ_1	3°	5°	7°		

Important Notice

The information presented in datasheets is for reference only. NXW reserves the right to make changes at any time to any products or information herein, without notice.

Customers are responsible for the design and applications, including compliance with all laws, regulations and safety requirements or standards.

"Typical" parameters which provided in datasheets can vary in different applications and actual performance may vary over time. Customers are responsible for doing all necessary testing to minimize the risks associated with their applications and products.